Indicators of Climate Change


Scientists have developed hundreds of indicators to track how our environment changes over time. This slide show describes several indicators that relate to the causes and effects of climate change.

The Greenhouse Effect

The Earth receives energy from the sun, then radiates much of this energy back toward space. However, certain gases in the atmosphere, called greenhouse gases, absorb some of the outgoing energy and trap it in the atmosphere. This “greenhouse effect” occurs naturally, but human activities have substantially increased the amount of greenhouse gases in the atmosphere, causing the Earth to trap more heat. This in turn is changing the Earth's climate.
Diagram showing how the greenhouse effect works.

U.S. Greenhouse Gas Emissions

In the United States, greenhouse gas emissions caused by human activities increased by 14 percent from 1990 to 2008. Carbon dioxide accounts for most of the nation's emissions and most of this increase. Electricity generation is the largest source of greenhouse gas emissions in the United States, followed by transportation.

Global Greenhouse Gas Emissions

Worldwide, emissions of greenhouse gases from human activities increased by 26 percent from 1990 to 2005. Emissions of carbon dioxide, which account for nearly three-fourths of the total, increased by 31 percent over this period.
Bar graph showing global greenhouse gas emissions in 1990, 1995, 2000, and 2005, broken down by source sector.

Atmospheric Concentrations of Greenhouse Gases

Concentrations of carbon dioxide and other greenhouse gases in the atmosphere have risen substantially since the beginning of the industrial era. Almost all of this increase is attributable to human activities.
Line graph showing concentrations of carbon dioxide in the atmosphere from hundreds of thousands of years ago through 2009.

Climate Forcing

Climate or “radiative” forcing is a way to measure how substances such as greenhouse gases affect the amount of energy that is absorbed by the atmosphere. An increase in radiative forcing leads to warming while a decrease in forcing produces cooling. From 1990 to 2008, the radiative forcing of all the greenhouse gases in Earth's atmosphere increased by about 26 percent.

U.S. and Global Temperature

Average temperatures have risen across the lower 48 states since 1901, with an increased rate of warming over the past 30 years. Average global temperatures show a similar warming trend, and 2000–2009 was the warmest decade on record worldwide. Within the United States, parts of the North, the West, and Alaska have seen temperatures increase the most.
Color-coded map showing how average temperatures changed across the United States from 1901 to 2008.

Heat Waves

The frequency of heat waves in the United States decreased in the 1960s and 1970s, but has risen steadily since then. The percentage of the United States experiencing heat waves has also increased. The most severe heat waves in U.S. history remain those that occurred during the “Dust Bowl” in the 1930s, although average temperatures have increased since then.


Over the period from 2001 through 2009, between 30 and 60 percent of the United States experienced drought conditions at any given time. However, the data for this indicator have not been collected for long enough to determine whether droughts are increasing or decreasing over time.

U.S. and Global Precipitation

Average precipitation has increased in the United States and worldwide. Since 1901, precipitation has increased at an average rate of more than 6 percent per century in the lower 48 states and nearly 2 percent per century worldwide.
Color-coded map showing how amounts of precipitation changed across the United States from 1901 to 2008.

Heavy Precipitation

In recent years, a higher percentage of precipitation in the United States has come in the form of intense single-day events. Eight of the top 10 years for extreme one-day precipitation events have occurred since 1990. The occurrence of abnormally high annual precipitation totals has also increased.

Tropical Cyclone Intensity

The intensity of tropical storms in the Atlantic Ocean, Caribbean, and Gulf of Mexico did not exhibit a strong long-term trend for much of the 20th century, but has risen noticeably over the past 20 years. Six of the 10 most active hurricane seasons have occurred since the mid-1990s. This increase is closely related to variations in sea surface temperature in the tropical Atlantic.

Ocean Heat

Several studies have shown that the amount of heat stored in the ocean has increased substantially since the 1950s. Ocean heat content not only determines sea surface temperature, but also affects sea level and currents.

Sea Surface Temperature

The surface temperature of the world's oceans increased over the 20th century. Even with some year-to-year variation, the overall increase is statistically significant, and sea surface temperatures have been higher during the past three decades than at any other time since large-scale measurement began in the late 1800s.
Image of the globe using different colors to represent sea surface temperature.

Sea Level

Average sea level worldwide has increased at a rate of roughly six-tenths of an inch per decade since 1870. The rate of increase has accelerated to more than an inch per decade in recent years. Changes in sea level relative to the height of the land vary widely because the land itself moves. Along the U.S. coastline, sea level has risen the most relative to the land along the Mid-Atlantic coast and parts of the Gulf Coast, while sea level has decreased relative to the land in parts of Alaska and the Northwest.
Color-coded map showing changes in relative sea level at points along the U.S. coastline from 1958 to 2008.

Ocean Acidity

The ocean has become more acidic over the past 20 years, and studies suggest that the ocean is substantially more acidic now than it was a few centuries ago. Rising acidity is associated with increased levels of carbon dioxide dissolved in the water, can affect sensitive organisms such as corals.
Color-coded map of the world showing changes in ocean acidity between the 1700s and the 1990s.

Arctic Sea Ice

Part of the Arctic Ocean stays frozen year-round. The area covered by ice is typically smallest in September, after the summer melting season. September 2007 had the least ice of any year on record, followed by 2008 and 2009. The extent of Arctic sea ice in 2009 was 24 percent below the 1979 to 2000 historical average.
Two satellite maps comparing the extent of Arctic sea ice in September 1979 with the extent in September 2007, which was 39 percent smaller.


Glaciers in the United States and around the world have generally shrunk since the 1960s, and the rate at which glaciers are melting appears to have accelerated over the last decade. Overall, glaciers worldwide have lost more than 2,000 cubic miles of water since 1960, which has contributed to the observed rise in sea level.
Two photos showing the same glacier from the same angle. One photo was taken in 1941, and the other was taken in 2004. The more recent photo shows that a substantial portion of the glacier has melted.

Lake Ice

Lakes in the northern United States generally appear to be freezing later and thawing earlier than they did in the 1800s and early 1900s. The length of time that lakes stay frozen has decreased at an average rate of one to two days per decade.

Snow Cover

The portion of North America covered by snow has generally decreased since 1972, although there has been much year-to-year variability.


Between 1950 and 2000, the depth of snow on the ground in early spring decreased at most measurement sites in the western United States and Canada. Spring snowpack declined by more than 75 percent in some areas, but increased in a few others.
Map with color-coded circles showing the percent increase or decrease in snowpack from 1950 to 2000 at measurement sites in the western United States and Canada.

Heat-Related Deaths

Over the past three decades, more than 6,000 deaths across the United States were caused by heat-related illness such as heat stroke. However, considerable year-to-year variability makes it difficult to determine long-term trends.

Length of Growing Season

The average length of the growing season in the lower 48 states has increased by about two weeks since the beginning of the 20th century. A particularly large and steady increase has occurred over the last 30 years. The observed changes reflect earlier spring warming as well as later arrival of fall frosts.
Line graph showing changes in the average length of the growing season in the lower 48 states from 1900 to 2002.

Plant Growing Zones

Winter low temperatures are a major factor in determining which plants can survive in a particular area. Plant growing zones have shifted noticeably northward since 1990, reflecting higher winter temperatures in most parts of the country.
Two color-coded maps of the lower 48 states. One shows plant hardiness zones in 1990, and the other shows plant hardiness zones in 2006. Hardiness zones indicate what types of plants can grow in a particular area.

Leaf and Bloom Dates

Leaf growth and flower blooms are examples of natural events whose timing can be influenced by climate change. Observations of lilacs and honeysuckles in the lower 48 states suggest that leaf growth is now occurring a few days earlier than it did in the early 1900s. Lilacs and honeysuckles are also blooming slightly earlier than in the past, but it is difficult to determine whether this change is statistically meaningful.

Bird Wintering Ranges

Some birds shift their range or alter their migration habits to adapt to changes in temperature or other environmental conditions. Long-term studies have found that bird species in North America have shifted their wintering grounds northward by an average of 35 miles since 1966, with a few species shifting by several hundred miles.

« Go back